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Abstract

In the design of real-time systems the capabiltiy for task interruption is often

considered essential. In this paper we examine the problem of task interruption in

knowledge-based domains. We propose that task interruption can be often avoided by

using appropriate functional architectures and knowledge engineering principles.
Situations for which task interruption is indispensable we describe a preliminary

architecture based on priority hierarchies.

1 Motivation
Real-time systems require that decisions be made dynamically in response to

incoming sensor data with desired responsiveness within the specified time deadlines.

Often real-time solutions should degrade gracefully. Knowledge-based real-time

systems perform several functions such as sensing information, processing information
to determine the situation status, evaluating the situation, plan for needed actions, and

executing the planned actions while monitoring the status of the plans, the system, and
the situation. In such systems time stress arises from sources external (in terms of high

data rate, unanticipated demands on problem solving, and unexpected deadlines) and

internal (knowledge based processing is computationally intensive and the computation

time is often unpredictable) to the knowledge based system. All practical systems have

limited resources and given the unexpected demands requires intelligent resource

management schemes.

Resource management involves making resources available to tasks that need them

and reclaiming resources from tasks that do not need them. To accomplish resource

management, amongst other things, the capability to interrupt tasks, suspend execution,
and later resume execution may be needed. Given the tasks to be interrupted, real-time

operating systems provide efficient low level mechanisms to implement task

interruption. In knowledge-based systems the determination of the task to be
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interrupted has to be inferred in runtime and is based on the specific context. Runtime
reasoning to determine which task to interrupt and is computationally expensive and
alternative solutions are desired.

2 Issues of Task Interruption in Real-Time Knowledge-Intensive
Architectures

An hospital is something all of us can relate to, therefore, following [Hayes-Roth 1987]

we use a hospital situation as an example to describe issues of task interruption.

Hospitals are well designed functional structures, they have finite resources
(heterogeneous), perform various tasks, and respond to time critical situations. The

function of a hospital is to provide health maintenance services to the community it

serves while controlling the cost of providing such services. A hospital situation has the

following characteristics relevant to task interruption.

1. Finite Resources: Resources of an hospital are its physicians, surgeons,
nurses, pharmacy, operating theaters, operating budget, etc. The
resources in each category are finite and often cannot be interchanged.

2. Environment Demands: The hospital receives a continuous stream of
patients. Different patients have different treatment requirements. During
certain seasons the demand for one type of treatment may increase
significantly. During certain calamities the demand on certain facilities
may suddenly increase. The hospital are required to adapt to such
external changes.

3. Internal Demands: Apart from the constraints of finite resources the
internal systems are subject to failure (e.g., strike by nurses). Thus the
available internal resources are dynamically changing.

4. Emergency Situation: Not all patients are attended to within uniform time
interval. Some patients make appointments. However, there is often a
stream of critical patients who need immediate care. The way a hospital
solves this problem is by providing an architectural solution; i.e., an
emergency ward. An emergency ward is staffed and operated under a
different set of resource allocation policies.

5. Cateqorized External Demands: Given the inflow of patients to a hospital
a single receptionist desk will quickly overflow. The problem is solved by
recognizing that incoming patient have different needs. Often patients
themselves know the general nature of problem. Again a hospital provides
an architectural soluh_on: it has several speciality wards and screening
nurses. An incoming patient can directly go to a speciality ward or go to
the screening nurse from where he is directed to an appropriate speciality
ward.

6. Resource Contention: At any given point in time there are only a limited
number of doctors, nurses, operating theaters, and anesthesiologists
available. Since hospitals attempt to minimize operating costs the
resources are scheduled based on an expected resource demand profile.
Whenever external demands exceed the average demand the available
resources fall short of the need. This leads to contention of resources.
Also internal failures can cause less than allocated resources to be
available thus causing resource contention even during a normal demand
situation.

7. Resource Facilitators: Certain resources such as Nurses are like resource
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facilitators - they make sure that resources needed to attend to a patient
are available to a doctor when needed. Also in situations of resource
contention nurses or interns can relieve a surgeon for a limited period of
time. Thus having resource facilitators helps in achieving graceful
interruption.

8. Anticipatory Scheduling of Resources: Apart from providing architectures
for efficiently applying resources, hospitals delibera(ely schedule
resources to reduce the effects of unanticipated upsets in resource
demands. Thus instead of being reactive to resource demands, the
demands and the readiness of resources are anticipated based on past
models and and activities are scheduled accordingly. For example, major
surgeries are often scheduled in morning hours. Blood transfusion and
anesthesiology is not scheduled during weekends [Hester, 1989].

9. Taxonomy of Tasks from Interruption viewpoint: A patient (i.e. a task)
needs a wide range of heterogeneous services. In a hospital situation
these services are provided by various specialists. To look into the
problem of interruptibility instead of thinking in terms of surgeons (i.e.
resources) being interruptible it is useful to think of activities being
interruptible or non-interruptible. Typically, most of the activities of a
physician might be interruptible. In other cases the activity need not be
interrupted while in other cases the activity cannot be interrupted.

10. Context Dependency: The above example gives a default classification of
activities. In reality the interruptability determination is made with respect
to the context. For example, contrary to expectations a surgeon's activity
is often interruptible. In fact the interruption is facilitated by the presence
of numerous interns and highly skilled nurses. Depending upon the stage
of the surgery a surgeon can be pulled out to assist on a relatively more
complex and urgent case.

11. Task Interactions: A certain patient is undergoing a course of treatment.
The patient develops a new abnormality requiring administration of new

drugs. Do we stop the ongoing treatmentcom_letely? Can the new drugs
unfavorably interact with the new treatment. Such issues need careful
examination.

12. Task Interdependency: A patient is undergoing an intricate surgical
procedure. Can the anesthesiologist be pulled away for another case?
This will depend upon the stage of the surgery and the future needs of this
procedure.

In summary:

1. Responsiveness and resource contention problems do not necessarily

require interruption. Architectural and appropriate resource scheduling
solutions are preferred over task interruption.

2. In situations of emergency (time critical situations) where the demand
considerably exceeds available resources task interruption may be
needed.

3. Determining interruptability of a task is highly context dependent.
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3 Intelligent Task Interruption
The Task Interruption problem can be defined as follows: Given n concurrently_act!ve

tasks T1, T2, .... , Tn (where each task is characterized by its resource needs and

completion deadlines) and a new task T waiting for execution the following question
need to be answered: Should we interrupt any of the existing tasks and which one?

Task Interruption in realistic situations requires use of situation and domain specific

knowledge to determine whether and who to interrupt. To perform efficient interruption
we need two things:

1. A Problem Solving model to enable deciding whether, who, and where to

interrupt. The model should take into account logical and temporal
dependencies between the on going activities.

2. An architecture to support efficient interruption thus addressing how to
interrupt.

In this paper the architecture support will be not be discussed in detail. Various

architectural designs will be briefly mentioned where appropriate.

4 Why Interrupt? or The Goals for Interruption
The problem of deciding whether to interrupt a task should be put in context of the

objectives of the situation. Some of the objectives and possible solutions are discussed
below.

1. Responsiveness. In real-time systems improving responsiveness for a certain a

category of tasks is important. In conventional software systems responsiveness is
achieved by sending an interrupt signal to the appropriate hardware. In AI architectures

responsiveness can be improved without interruption. Following designs lead to
improved responsiveness;

• Task Grain Size Control: In agenda based architectures (Figure la) tasks
are posted on a agenda and scheduled for execution. A task is executed

only after the previous task was completed. The waiting time of a task on
the agenda is equal to the product of number-of-tasks-ahead in the task

queue and the average-task-execution-time. The agenda gets a chance to
deallocate a task every average-task-execution-time seconds. Thus

responsiveness can be increased by decreasing the task granularity.
Large tasks can be decomposed and expressed as a sequence of such

micro-tasks. For example, hospitals have time-based agendas for nurses.
By appropriately decomposing the size of the tasks they can do (such as
administor medicine, take temperature) their responsiveness is increased.

• Priority Channel Architectures. In priority channes architectures different

channles are provided for events of different priority (Dodhiawala et al.,

1989). A channel defines computation through all the stages of problem
solving (very much like a thread) (Figure l b). Tasks on a higher priority
channel are given prcedence over tasks on lower priority channel. Thus the

responsiveness for high priority tasks is much better. For example, an
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accident victim will probably be put on an emergency channel.

Multiple Priority Task Queues: Instead of having a single task queue one
can define multiple task queues based on the priority of tasks. In such a

scheme a cpu time slice will always be first given to the highest priority task
queue. In multiprocessor architectures instead of a cpu time slice we will
allocate adequate number of processors to appropriate task queue. The
allocation of processors can be either static or dynamic. In dynamic

allocation the responsivenss requirement can be changed to meet the
external demand and processors be allocated appropriately. The QP-Net

architecture provides the dynamic allocation feature [Sharma and
Sridharan, 1988]. As an example certain wards in a hospital, such as

intenisive care, get a high priority.

2. Redundant Tasks. AI tasks often have unpredictable execution times. In some

designs multiple solution tracks are simultaneously investigated and the best solutions
obtained within the deadline is accepted. For example, in some emergencies both the

hospital and the local fire department can get a call. This causes the problem of

deleting no more desired solution tracks. One way is to keep track of all of the
redundant tasks and then delete them later. Another possibility is to make these tasks

timed tasks with an allocated time budget. If the tasks do not complete within the time

budget then they self terminate.

3. Lack of Resources. In some situations it is possible that resources necessary for a

task may no longer be available (Dynamic reallocation of resources will cause this

situation). Thus it will be desirable to remove the task from the list of active tasks. This

problem is of importance in control systems tasks where certain actions may continue

ignorant of the status of resources. A solution is to check for the resources periodically

and self suspend/terminate when such resources will no longer be available.

4. Remove Undesired/Harmful Tasks. In some contexts certain tasks if allowed to

continue will cause unacceptable consequences. In such cases these tasks have to be

identified and interrupted. Task interruption will also be needed in case of conflicts

between the tasks.

5. Free-Up Resources. If the resources needed for a task cannot be made available

by rescheduling and the tasks cannot wait then certain number of tasks will have to be

interrupted.

In summary:

1. For most of the traditional reasons for interruption it is possible to avoid

task interruption by utilizing appropriate architectural and task model

designs. Given the cost of interruption such alternatives are preferable.

2. Situations where task interruption is needed are: task conflicts (logical),

removal of potentially harmful tasks, and for freeing-up resources for more
critical tasks.
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5 Who to Interrupt?
The question of who to interrupt needs to be answered in basically two cases: (1)

There is a logical conflict between tasks, and (2) There is a need to free-up resources

for more critical tasks. To solve this problem we will have to develop an approach for

selecting one set of tasks over other. Such a selection needs to based on the

significance of the tasks to the overall goals of the system. We thus need to develop
certain approaches for expressing and reasoning about the significance.

Task Significance Principle: The information on task significance can be used as
follows: If there are n active tasks (T1, T2, . .... Tn) and a new task T is awaiting

execution then interrupt enough number of tasks of significance less than T so as to
release sufficient resources for T.

5.1 Representation Issues of Task Significance
The significance measure of a task should express the following types of knowledge

about the tasks:

1. Certain domain specific preferences or priorities. For example, in most
domains the safety issue will have a precedence over productivity issues.

2. Sensitivity to real-time factors such as task deadlines. Thus even though
two instances of same task (defend against an enemy missile) may have

same preference but the one with a shorter deadline takes precedence
over the other.

3. Sensitivity to Context. Most real-time systems operate in different modes.
For example a certain fighter plane can be either in attack mode or egress
mode. Depending upon the mode the tasks may have different

preferences.

4. Task Interactions. In complex systems the effect of execution or
termination of a task can propagate various side effects. In real-time

systems the unpredictable dynamics of the environment makes it
infeasible to anticipate and compile all possible interactions. The exact
nature and the extent of the impact of these side effects has to be

determined during run-time.

5. Task Dependencies. The basic principle here is that if a significant task
depends upon the result of a specific task then that task is significant too.
For example, if we interrupt the supporting tasks then the context and
resources for several other tasks may be lost and they may have to be

interrupted as well. In this dependency analysis we need to examine the
criticality with respect to the new_task T as well. Moreover, the task

dependencies can be time dependent. For example, given three tasks Ti,
Tj, and Tk task Tj may require that task Ti be executed by some time tl,
and task Tk may require that Ti be executed within the window (t2, t3).

In summary:

1. Significance of a task depends upon the runtime environment of a system.
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Determining task significance requires extensive runtime analysis. The

problem being that the computational cost of such analysis may be
prohibitive to real-time performance".

2. Even if the computation of significance can be done in real-time the

determination of the impact of task interaction and dependencies will be
imprecise. This is due to the unpredictable and dynamic nature of the real-
time environments.

5.2 Reasoning Issues Related to Task Significance

Given significance measures of various tasks one can then use the Task Significance

Principle as a reasoning guideline. In dynamic systems where the significance of tasks

can change rapidly the recomputation of the significance of all the tasks can be

prohibitive. To appreciate the implication of the last point let us consider two measures

of significance: a cost/benefit measure and a utility measure.

Cost/Benefit Measure. Assume a new task T on the waiting queue and N tasks on
the active queue. Should we interrupt an active task in favor of new task T? In a

cost/Benefit decision making framework it will be argued that this question should be
answered based on the following considerations:

(1) What is the benefit of executing T?
(2) What is the penalty of not executing T?
(3) If T will be swapped with an active task Ti then

what is the penalty of terminating Ti.

T should replace a Ti if there exists a Ti such that:

(1)-(3)>(2)

This requires computing at least N such relationships. The bigger problem arises in

computing each of the terms (1), (2), and (3). Since the benefit and penalty depends

upon the interaction between the task and the resources needed for T may be obtained

by interrupting more than one active tasks the complexity of the problem becomes quite

hairy. Apart from the complexity arising from the combinatorics of the problem there is

also complexity due to interactions based on phenomenological knowledge.

Utility Measure

One way to escape the problem of performing runtime analysis is to define some

measure of utility of allocating resources to tasks. Thus if the system has say a
maximum of N tasks then we can define utility of allocating computational resources to

these tasks. At any given moment let us assume there will be M (< N) tasks on the

scheduling queue. Let us assume that we can only allocate resource quantity R. Then
we will select the subset of tasks from M such that the total resources is less than or

equal to R and the utility is maximized. Every time we reschedule resources we will

recompute the utility. Apart from the problem of how we define these utility functions we
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have the following problems:
1. We will have to evaluate 2**N configurations to find out the maximum

utility subset.

2. The utilities typically will not be static but context dependent. Thus we
may have to compute utility functions themselves. In a tightly coupled
system these utilities may depend on several parameters thus creating a
modelling nightmare.

In practical systems another problem arises. Not all tasks are equal and representing
them on a uniform scale can lead to anamolus results. For example, suppose we have
the following preference rule for a passenger plane:

Ground Landing is preferred to Crash Landing is preferred to

Total Crash

Using utility theory we can get the following undersired result:

Ground landing with probability pl

or Total Crash with probability p2

is preferred to

Crash Landing with probability p3]

In summary:

1. We need a measure of significance which is easy to model, compute, and

change dynamically. The significance measure will have to be sensitive to
contexts, task interactions, and dependencies.

2. To efficiently search for preferred tasks we need a computational
architecture.

6 TIPS: A Preference Based Architecture for Task Interruption
TIPS is an agenda-based architecture. It consists of a waiting queue (see Figure 2),

an active tasks queue, a tasks scheduler to schedule tasks on the waiting queue, an

interrupt scheduler, and a resource scheduler. In general, there can be more than one

waiting and active tasks queue for each task category. For example, one can have an

emergency waiting and active task queue similar to channels design in RT-1
[Dodhiawala et al., 1989]. In such a case the resource scheduler will first always check

the emergency queues for work to do. In general, resource scheduler allocates cpu time

slices (in multiprocess systems) or processors (in multiprocessor systems). The task
scheduler is same as the scheduler in agenda based systems. It prioritizes tasks on the

waiting queue. The interrupt scheduler basically solves the problem of determining

whether an interrupt is needed and who to interrupt.

Interrupt scheduler will not solve the problem of responsiveness and other aspects of

real-time systems for which interruption is really not needed. It is assumed that for

responsivenss appropriate functional architectures will be used such as RT-I. Also the

computation of deadlines and resource requirements are solved by the problem solving
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architecture.

Input Buffer

Task Generator

(External Environment)

Scheduler

Interrupt
Scheduler

Figure 2. A Preliminary Architecture for TIPS

6.1 Design of Interrupt Scheduler

Interrupt scheduler uses a model of domain contexts, goals, and tasks defined at

compile time. The model is hierarchical and consists of at least three layer as shown in

Figure 3. Figure 4 shows an example from the Howitzer domain. There are two aspects
to the hierarchical model:

1. Preferences of priorities of the tasks are defined with respect to the goals.
In general priorities of elements in layer k are defined with respect to the
elements in layer (k-1).

2. The hierarchical model is also used as a control structure for determining
who to interrupt.

Top Level

Goal

G1 G2 G3 G4 G5

C1 C2 C3 C4 ............................... Cn

Figure 3. A Preference/Priority Hierarchy
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Mission Success

Mission Objectives Survivability Optimal Weapons Use

Task1 k4

Figure 4. Goals-Task Priority Hierarchy Example

Modeling Task Priorities

The following discussion is based on Saaty's treatment of priorities in hierarchical

systems [Saaty 1980]. We will not review Saaty's theory here but simply illustrate it by

examples. Some of the basics are as follows:

1. Let C1, C2, C3 ...... Cn be n tasks or goals. Then priority of Ci is defined
as a function which maps C -> [0, 1]. If wi is priority of Ci with respect to a

high level goal then

wl +w2 +w3+ .... +wn= 1

2. Let xPy denote that x is preferred over y. xly implies x and y are equally

pereferable. Then following relations hold:

if xPy then wx > wy

if xIy then wx = wy

if xPy, yPz then xPs and also that wx > w=

In case of hierarchical structure shown in Figure 3, the priority of the first task with

respect to the top node is given by:

WC1 - WCI(G1)*WG1 + WCI(G2)*WG2 + ..... +WCI(G5)*WG5

Where,

WC 1 = Priority of C 1 with respect to Top Level Goal

WCI(Gi) = Priority of C1 with respect to goal Gi
WGi = Priority of Goal Gi with respect to Top Level Goal

Task Priorities under Change of Context

If the context changes then the preferences of goals changes with respect to the

overall objective. Given new goal level priorities new task level priorities can be

79



computed.

Example

Consider the aircraft landing example shown in Figure 5. Under the current context

the priorities are shown in Figure 5a. In this context it is more important to find an airport

with adequate landing facilities. Expedient landing will help passengers feel better but

that is less important. In this case the priorities computation lead to the choice of airport

D. The task for performing landing at airport A is initiated.

After a while the pilot gets a low fuel level alarm and changes his priorities in favor of
expedient landing. He only needs to change the priorities at the goal level. This new

prioritization leads to selecting airport D.

6.2 Task Models

We are essentially considering two types of tasks: tasks that are interruptible and the

tasks that are not interruptible. Tasks can be composed of other tasks or micro tasks.

Micro tasks once started execute to completion. The size of the micro tasks is such that

their execution time is less than the overhead time associated with task interruption.

(Task new-task

:precondit ions

:body

:sponsor

:goal

:context

:priority

:children-tasks

:Dependent s

:Supporters

:Exclude-List

:deadline

:execut i on- time

:resources-needed

:status)

(Micro-task new-micro-task

:precondition

:body

:sponsor

:goal

:context

:priority

:deadline

:execution-time

:resources-needed
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Figure 5. Airport Prioritization for Passenger Safety
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: status)

6.3 Control Scheme

The control scheme works on the following principles:

1. Resolve Conflicts Locally First. If a task appears on the waiting list and was created

to support goal Gi then compare the priority of the new task with respect to tasks

currently active for supporting Gi. If necessary, swap the new tasks with one or more of
the active tasks for Gi.

2. Fallback to the next higher level in the hierarchy. If the conflict cannot be resolved

locally then it is necessary to resolve conflicts at the higher goal level.

3. Observe Task dependency and interactions constraints to prune the alternatives.

The task dependency and interaction constraints are defined as a part of the task

models (see slots dependents, supporters, exclude-list in task model).

4. Use the most comprehensive priority value. It is possible for the same tasks to exist
on the active tasks list/agenda/schedule/queue multiple times based on the different

goals it needs to serve. In that case the total priority of the task should be used.

This is how the scheme will work. In the beginning the system starts with a goal G. In

fact the system may start with several goals G1, G2, G3 .... For each of the goals

priority is defined - the interpretation of preferences being the relative resources to be

allocated to pursuing these goals. New tasks are either spawned by the goals or are
created in support of the goals. The priorities of these tasks are defined at the time of

task creation. These priorities can either be default priorities or may be based on the
context at the creation time. We then use four principles defined above to solve the

interruption problem.

7 Conclusion

In this paper we have described an analysis of task interruption and a paper design.

We believe in the richness of task interruption process. It is our premise that task

interruption should be avoided for time critical situation by using appropriate

architectural and data structural features. For situations where interruption is essential

we have argued in favor of minimizing runtime reasoning. We have described

knowledged-based architecture (TIPS) which attempts to explore various features to

reduces runtime reasoning. These features are: preference models for tasks, a domain

specific task context tree, and a hierarchical control mechanism. Table 1 summarizes

major points of this paper.
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Table 1. Designs Issues and Solution Options for Interrupt Based

Architectures

Design Issue Design Options

Why Interrupt?

Responsiveness

Free-up Resources

Tasks Not Needed

No Interrupt,

Control of Task Grainsize,

Special architectures

(RT-I, QP-Net)

Reschedule tasks,

Interrupt in favor of

Critical tasks

Soft/Hard Interrupt

Who to Interrupt? Preference/Priority Based Selection,

Context Tree,

Hierarchical Task Selection

(TIPS)

Where to Interrupt? Special Task Models

Predefined logically safe states

(between two micro-tasks)

On demand (special cases only)

How to Interrupt?

No Interrupt

Soft Interrupt

Hard Interrupt

Task Size, Micro-tasks,

Dynamic Allocation

Remove from Agenda or

Active Tasks Queue

Utilize RTOS support
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